SYLLABI AND SCHEME OF EXAMINATIONS FOR

(SKILL ENHANCEMENT COURSE FOR UNDER GRADUATE PROGRAM OFFERED BY THE DEPARTMENT OF CHEMISTRY)

B.Sc. (Life Sciences/Physical Sciences Program)

(Based on Curriculum and Credit Framework for UG Programs under NEP)

WITH EFFECT FROM THE SESSION 2024-25

MAHARSHI DAYANAND UNIVERSITY ROHTAK (HARYANA)

SCHEME OF EXAMINATIONS FOR SKILL ENHANCEMENT COURSE OFFERED BY THE DEPARTMENT OF CHEMISTRY

Skill Enhancement Course (SEC)	Nomenclature	Course Code	Credit Distrib			Total Credits	Workl	oad		Total Workload		Ν	larks		
			L	Т	Р		L	Т	Р		Theory		Practical		Total Marks
											Internal	External	Internal	External	
			1			Semester I	(Session	2024-2	25)		•	•		•	
SEC 1 @ 3 credits	SECI-Role of	24CHE401SE01	2	0	0		2	0	0		15	35			
	Chemistry in					03				04					75
	Society SEC Chemistry		0	0	1	_	0	0	2				05	20	
	Practical-I		0	0	1		0	0	2				05	20	
	Tactical-1					Semester II	(Session	2024-	25)						
SEC 2 @ 3 credits	SECII-Fuel	24CHE402SE01	2	0	0		2	0	0		15	35			
	Chemistry					03				04					75
	SEC Chemistry		0	0	1		0	0	2				05	20	
	Practical-II														
	-	1	1	T		Semester III	· ·	2025-	<u></u>			-	•	-	
SEC 3 @ 3 credits	SECIII-Batteries	25CHE403SE01	2	0	0		2	0	0		15	35			
	SEC Practical-III		0	0	1	03	0	0	2	04			05	20	75
		•				Semester VII	(Session	n 2027	-28)		•	•	•	•	
SEC 5 @ 4 credits	Organic Chemistry	27CHE407SE01	0	0	4	04	0	0	8	08			30	70	100
(if offered as an	Practical-I														
option)															
						Semester VIII		n 2027	-28)						
SEC 6 @ 4 credits	Organic Chemistry	27CHE408SE03	0	0	4	04	ption-I 0	0	8	08			30	70	100
(if offered as an	Practical-II	27CHE400SE05	0	0	4	04	0	0	0	00			30	70	100
option)															
• ·		•				Semester VIII		n 2027	-28)		•	•	•	•	
	I	1		1			ption-II	1	1					T	
SEC 6 @ 4 credits	Inorganic Chemistry	27CHE408SE01	0	0	4	04	0	0	8	08			30	70	100
(if offered as an	Practical-II OR	OR													
option)	OR Physical Chemistry	27CHE408SE02													
	Practical-II														
	OR	OR													
	Organic Chemistry														
	Practical-II	27CHE408SE03													

B.Sc. (Life Sciences/Physical Sciences Program)

Syllabi for Skill Enhancement Course Offered by the **Department of Chemistry**

for B.Sc. (Life Sciences/Physical Sciences Program)

Name of Program	B.Sc. (Life Sciences/Physical	Program Code	
	Sciences)		
Paper No.	SEC Paper – I	Nomenclature	Role of Chemistry in Society
Name of the Course	Skill Enhancement	Course Code	24CHE401SE01
	Course		
Credits	02	Maximum Marks	50
Hours per Week	02	External Marks	35
Duration of	02 Hrs.	Internal Marks	15
Examination			
			lerstanding of analytical techniques in
chemistry and environment	tal science. Students will l	learn soil and water analys	sis methods, including pH measurement,
			preparation and uses of various personal
			production and purification processes,
emphasizing sustainability			
			o attempt five questions in all. Question
			s covering the entire syllabus. Further,
	0	d the candidates will be	required to attempt one question from
each unit. All questions w		falles accordent the standards	
Course Learning Outcom			ling pH measurement and estimation of
ions.	ciency in analysing son a	and water samples, menuc	ing pri measurement and estimation of
CLO2: Understand the pre	eparation and applications	s of personal care product	·S.
CLO3: Gain knowledge of			
			g fractional distillation and cracking,
	inability and clean fuel te		
		Unit–I	
Analysis of Soil and Wa	ater		
Composition of soil, co	ncent of pH and pH r	neasurement of soil, c	omplexometric titrations, chelation,
-	neept of pil and pil i		
chelating agents, use of			sium ions in soil. Definition of pure
00	indicators, estimation	of calcium and magnes	sium ions in soil. Definition of pure nethods, water purification methods,
00	indicators, estimation le for contaminating w	of calcium and magnes vater, water sampling n	
water, sources responsib	indicators, estimation le for contaminating w	of calcium and magnes vater, water sampling n	

Semester — I (Session: 2024- 25)

A general study including preparation and uses of the following: Hair dye, soap, shampoo, suntan lotions, face powder, lipsticks, talcum powder, nail enamel.

Unit–III

Pesticides

General introduction to pesticides (natural and synthetic), benefits and adverse effects, changing concepts of pesticides, brief introduction of structure activity relationship, synthesis and technical manufacture and uses of representative pesticides in the following classes: organochlorines (gammexene), organophosphates (malathion).

Unit–IV

Experimental Techniques

Basic principle of pH metric, potentiometric and conductometric titrations, applications of conductivity measurements: determination of degree of dissociation, determination of K_a of acids and base, buffer solution, buffer action, Henderson–Hazel equation, buffer mechanism of buffer action.

Books Recommended/References:

- 1. Instrumental Methods of Analysis by D. A. Skoog, F. J. Holler and S. R. Crouch.
- 2. Chemistry In Daily Life by K. Singh.
- 3. General Chemistry Principles, Patterns, and Applications by B. Averill.
- 4. Engineering Chemistry by P. C. Jain and M. Jain.
- 5. Industrial Chemistry by B. K. Sharma.
- 6. Pesticides by R. J. Cremlyn.
- 7. Principles of Physical Chemistry by B. R. Puri, L. R. Sharma and M. S. Pathania.

Name of Program	B.Sc. (Life Sciences/Physical Sciences)	Program Code	
Paper No.	SEC Paper – I	Nomenclature	SEC Chemistry
			Practical – I
Name of the Course	Skill Enhancement Course	Course Code	24CHE401SE01
Credits	01	Maximum Marks	25
Hours per Week	02	External Marks	20
Duration of Examination	02 Hrs.	Internal Marks	05

Syllabus Objectives: This course aims to make the students understand the colloidal solution, their preparation and principle of paper chromatography. It aims to build concepts related to the detection of sulphur in organic compounds as well as purity and purification methods for organic compounds.

Note: Examiner will set two experiments for practical examinations. (7×2) Marks

Course Learning Outcomes (CLO): By the end of the course, the students will be able to:

CLO1: Learn preparation of colloidal solution.

CLO2: Check the purity of compounds.

CLO3: Explore detection of sulphur.

CLO4: Learn about the purification methods of organic compounds.

CLO5: Understand the principle of paper chromatography.

List of Experiments

- 1. Preparation of colloidal solution of ferric hydroxide [Fe(OH)₃].
- 2. Check the purity of organic compounds. (By determination of melting and boiling points).
- 3. Detection of sulphur in organic compound by Nitroprusside test and Lead acetate test.
- 4. Purification of the organic compounds by crystallization (from water and alcohol) and distillation methods.

- 5. Separation of mixture of organic compounds by paper chromatography.
- 6. Separation of mixture of inks (blue, red and green) by paper chromatography.

Viva-Voce(03 Marks)Note Book(03 Marks)Books Recommended/References:(03 Marks)

1. Laboratory Manual Chemistry of NCERT for class 11th and 12th.

- 2. Basic Concepts: Physical Chemistry Experiments by N. Seedher.
- 3. Senior Practical Physical Chemistry by B. D. Khosla.
- 4. Practical Chemistry by O. P. Pandey, D. N. Bajpai and S. Giri.
- 5. Practical Organic Chemistry A Primer by V. Peesapati.
- 6. Practical Organic Chemistry by A. K. Manna.

Semester — II (Session: 2024- 25)

Name of Program	B.Sc. (Life	Program Code	
	Sciences/Physical		
	Sciences)		
Paper No.	SEC Paper – II	Nomenclature	Fuel Chemistry
Name of the Course	Skill Enhancement	Course Code	24CHE402SE01
	Course		
Credits	02	Maximum Marks	50
Hours per Week	02	External Marks	35
Duration of	02 Hrs.	Internal Marks	15
Examination			
Syllabus Objectives: This	course provides an intro	oduction to the chemistry	of fuels, focusing on the composition,
			s of fuels. Topics covered include solid
fuels (such as coal), liquid	fuels (such as crude oil	l, petroleum etc.), gaseous	s fuels (coal gas, natural gas and blast
			gies, and sustainable energy solutions.
			attempt five questions in all. Question
			s covering the entire syllabus. Further,
-	•	d the candidates will be	required to attempt one question from
each unit. All questions w			
Course Learning Outcom			
			ch as petroleum, coal and natural gas),
		fuels (such as synthetic fu	
		of fuel chemistry, in	cluding combustion mechanisms &
	elevant to fuel reactions.		
			sis of different types of fuels, including
	ion, cracking, hydrogena		
CLO4: Learn about the che	emical composition, phys	sical properties and charac	cteristics of various fuels.
		Unit–I	
Solid Fuels			
0 1 1 . 1	··· 1 · C	1 1 1	tracteristics & distribution of Indian

Coal - origin, chemical composition, calorific value, classification, characteristics & distribution of Indian coals, storage and spontaneous combustion of coal, coal washing and blending, petrographic constituents of coal, carbonization of coal, manufacture and properties of metallurgical coke, recovery of by-products.

Unit–II Liquid Fuels Origin and composition of crude oil, crude oil distillation and its products with special reference to gasoline, kerosene and diesel oil, cracking and reforming, coal tar distillation products, shale oil. Unit–III Caseous Fuels

Gaseous Fuels

Natural gas, coal gas, coke oven and blast furnace gas, manufacture of water gas and producer gas, carburetted water gas. Synthetic fuels: hydrogenation of coal, Fischer–Tropsch synthesis.

Unit_IV

Nuclear Fuels

Introduction, nuclear fuels and nuclear reactors, moderators and structural materials, introduction to renewable energy sources. Combustion: combustion of solids fuels, calculation of volume and weight of air necessary for combustion of fuels, gas analysis.

Books Recommended/References:

1. Fuels and Combustion by S. Sarkar.

- 2. Elements of Fuels, Furnaces & Refractories by O. P. Gupta.
- 3. The Elements of Fuel Technology by G. W. Himus and L. Hill.
- 4. Fuel: Solid, Liquid and Gaseous by J. S. S. Brame and J. G. King.

Name of Program	B.Sc. (Life Sciences/Physical Sciences)	Program Code	
Paper No.	SEC Paper – II	Nomenclature	SEC Chemistry
			Practical – II
Name of the Course	Skill Enhancement Course	Course Code	24CHE402SE01
Credits	01	Maximum Marks	25
Hours per Week	02	External Marks	20
Duration of	02 Hrs.	Internal Marks	05
Examination			

Syllabus Objectives: The course introduces the learner to prepare washing and liquid soaps, to check hardness, dissolved oxygen (DO) and chemical oxygen demand (COD) of water. This course also deals with analysis of saturation and unsaturation in organic compounds.

Note: Examiner will set two experiments for practical examinations.

(7×2) Marks

Course Learning Outcomes (CLO): By the end of the course, the students will be able to:

CLO1: Prepare soap by saponification.

CLO2: Check hardness of water by EDTA method.

CLO3: Detect unsaturation in organic compounds.

CLO4: Determine DO and COD values in given water sample.

List of Experiments

- 1. Preparation of washing soap from oils/fats.
- 2. Preparation of liquid soap from oils/fats.
- 3. To check hardness of water volumetrically by EDTA method.
- 4. To check saturation and unsaturation in organic compounds by Br₂ water and Bayer's reagent.
- 5. To determine DO and COD values in given water sample.

Viva-Voce	(03 Marks)
Note Book	(03 Marks)
Books Recommended/References:	
1. Soap-Making Manual-A practical handbook on the raw materials, their manipulati modern soap plant by E. G. Thomssen.	on, analysis and control in the
2. Practical Chemistry by O. P. Pandey, D. N. Bajpai and S. Giri.	

- 3. Practical Organic Chemistry by A. K. Manna.
- 4. Water Pollution Causes, Effects and Control by P. K. Goyal.

Semester — III (Session: 2025- 26)

Name of Program	B.Sc. (Life	Program Code	
	Sciences/Physical		
	Sciences)		
Paper No.	SEC Paper – III	Nomenclature	Batteries
Name of the Course	Skill Enhancement	Course Code	25CHE403SE01
	Course		
Credits	02	Maximum Marks	50
Hours per Week	02	External Marks	35
Duration of	02 Hrs.	Internal Marks	15
Examination			
Syllabus objectives: The	aim of this paper is to	make the students learn t	he basic principle, design, working of

Syllabus objectives: The aim of this paper is to make the students learn the basic principle, design, working of batteries and their applications in daily life. It includes comprehensive overview of general characteristics and applications of some primary and secondary batteries.

Note: Examiner will set nine questions and the candidates will be required to attempt five questions in all. Question number one will be compulsory containing seven short answer type questions covering the entire syllabus. Further, examiner will set two questions from each unit and the candidates will be required to attempt one question from each unit. All questions will carry equal marks.

Course Learning Outcomes (CLO): By the end of the course, the students will be able to:

CLO1: Understand battery fundamentals.

CLO2: Analyse battery types.

CLO3: Examine battery chemistry.

CLO4: Evaluate battery performance.

CLO5: Study battery materials.

Unit–I

Basic Concepts

Components of cells and batteries, classification of cells and batteries, operation of a cell, theoretical cell voltage, capacity, energy, specific energy and energy density of practical batteries.

Unit–II

Battery Design and Factors Affecting Battery Performance

General introduction, designing to eliminate potential safety problems, battery safeguards when using discrete batteries, battery construction, design of rechargeable batteries, factors affecting battery performance.

Unit-III

Primary Batteries

General characteristics and applications of primary batteries, types and characteristics of primary batteries, comparison of the performance characteristics of primary battery systems, recharging primary batteries.

A) Zinc-Carbon Batteries (Leclanche' and Zinc Chloride Cell Systems):

General characteristics, cell chemistry, types of cells and batteries, construction, cell components.

B) Magnesium and Aluminum Batteries:

General characteristics, cell chemistry, construction of Mg/MnO₂ batteries, performance characteristics of Mg/MnO₂ batteries, sizes and types of Mg/MnO₂ batteries, other types of magnesium primary batteries.

Unit-IV

Secondary Batteries

General characteristics and applications of secondary batteries, types and characteristics of secondary batteries, comparison of performance characteristics for secondary battery systems and introduction, chemistry, construction, performance characteristics, charging characteristics of following batteries: Lead batteries, Lithium ion batteries, Iron electrode batteries, Nickel-Cadmium, Nickel-Metal hydride, Nickel-Zinc batteries.

Books Recommended/References:

- 1. Understanding Batteries by R. M. Dell and D. A. J.
- 2. The TAB Battery Book: An In-Depth Guide to Construction, Design and Use by M. Root.
- 3. Fuel Cell- principles and applications by M. A. Scibioh and B. Vishwanathan.
- 4. Energy Storage Systems Batteries and Their Chemistry by M. Cultu.

Name of Program	B.Sc. (Life Sciences/Physical Sciences)	Program Code	
Paper No.	SEC Paper – III	Nomenclature	SEC Chemistry
			Practical – III
Name of the Course	Skill Enhancement	Course Code	25CHE403SE01
	Course		
Credits	01	Maximum Marks	25
Hours per Week	02	External Marks	20
Duration of	02 Hrs.	Internal Marks	05
Examination			

Syllabus Objectives: This course aims to provide knowledge of total dissolved solid (TDS) of water, retention factor (R_f value) of oil, estimation of iron from alloy and to detect aldehyde group. It also aims to enable student to identify the adulteration in given food materials.

Note: Examiner will set two experiments for practical examinations.

(7×2) Marks

Course Learning Outcomes (CLO): By the end of the course, the students will be able to:

CLO1: Determine the TDS of given water sample.

CLO2: Determine retention factor (R_f value) of oil.

CLO3: Estimation of iron from alloy.

CLO4: Detect aldehyde group present in given organic compound.

CLO5: Identify the adulteration in given food materials.

List of Experiments

- 1. Determination of TDS in a given water sample.
- 2. Determine retention factor (R_f value) of oil.
- 3. Estimation of iron from alloy.
- 4. Detection of aldehyde group by Silver Mirror test and Felhing's solution.
- 5. Checking the adulteration in given food materials (Milk, edible oil, sugar, turmeric and chilli powder).

Viva-Voce	(03 Marks)
Note Book	(03 Marks)
Books Recommended/References:	
1. Water Treatment, How To Make Water Safe To Drink by D. Holman.	
2. Organic Chemistry by S. N. Dhawan.	
3. B.Sc. Chemistry Practical by S. Goyal.	

4. Food Processing and Preservation by G. Subbulakshmi.

Semester — VII (Session: 2027-28)

Name of Program	B.Sc. (Life Sciences/Physical	Program Code	
	Sciences)		
Paper No.	SEC Paper – V	Nomenclature	Organic Chemistry Practical – I
Name of the Course	Skill Enhancement	Course Code	27CHE407SE01
	Course		
Credits	04	Maximum Marks	100
Hours per Week	08	External Marks	70
Duration of	08 Hrs.	Internal Marks	30
Examination			
Syllabus Objectives: This	course in organic chemist	try focuses on qualitative	analysis and simple organic preparations
			ind identification of organic compounds.
			epares them for further studies in organic
chemistry and applications	in various scientific and	industrial contexts.	
Note: Examiner will set tw	vo experiments for practi	ical examinations.	
Course Learning Outcom	nes (CLO): By the end of	f the course, the students	will be able to:
CLO1: Handle organic cho	emicals in a safe and com	npetent manner.	
CLO2: Understand the ser	paration of organic compo	ounds from binary mixtur	es.
CLO3: Perform the standa	rd techniques used in pra	ctical organic chemistry.	
			ification of organic compounds.
CLO5: Apply the basic ch	emical concepts to under	stand the mechanism of c	hemical reactions.
List of Experiments			
1. Qualitative Analysis	5		(50 Marks)
		of organic compounds i	n binary mixtures by chemical tests

Separation, purification and identification of organic compounds in binary mixtures by chemical tests and preparation of their derivatives.

Viva-Voce	(10 Marks)
Note Book	(10 Marks)

Books Recommended/References:

1. Experiments and Techniques in Organic chemistry by D. J. Pasto, C. R. Johnson and M. J. Miller.

- 2. Macroscale and Microscale Organic Experiments by K. L. Williamson and D. C. Heath.
- 3. Systematic Qualitative Organic Analysis by H. Middleton.
- 4. A Handbook of Organic Analysis-Qualitative and Quantitative by H. Clark.
- 5. Vogel's Textbook of Practical Organic chemistry by A. I. Vogel, A. R. Tatchell, B. S. Furnis, A. J. Hanaford and P. W. G. Smith.

Semester — VIII (Session: 2027- 28)

(Option –I)

Name of Program	B.Sc. (Life Sciences/Physical Sciences)	Program Code			
Paper No.	SEC Paper – VI	Nomenclature	Organic Chen Practical –		
Name of the Course	Skill Enhancement Course	Course Code	27CHE408SE03		
Credits	04	Maximum Marks	100		
Hours per Week	08	External Marks	70		
Duration of	08 Hrs.	Internal Marks	30		
Examination					
Syllabus Objectives: The understanding of organic s The course aims to prepare combining theoretical know	ynthesis techniques and e students for advanced v vledge with practical skil	the methods for assessing work in organic chemistry lls in organic synthesis and	the purity of synthesize , research or industrial a	d compounds.	
Note: Examiner will set tw					
Course Learning Outcom	· / •		vill be able to:		
CLO1: Handle organic che					
CLO2: Perform the standa					
CLO3: Carry out multistep					
CLO4: Apply the basic che			nemical reactions.		
CLO5: Characterize and pu	urily the synthesized con	npounds.			
List of Experiments	· · · · · · ·	<u> </u>			
1. Simple organic prep			prepared:	(20 Marks)	
	aldehyde and acetophe	enone.			
(ii) Phenyl-azo- β -naphtl	•				
(iii) Adipic acid from cy		1 • 1 1 4			
(iv) 2-Butoxynaphthalen	-			-)	
(v) 3,4-Dihydropyrimid		dehyde, β -ketoester and	urea (Biginelli reaction	1).	
(vi) Benzilic acid from b	enzil.				
2. Two-step organic syn			ared:	(30 Marks)	
	etophenone <i>via</i> acetopl				
(ii) <i>p</i> -Nitroaniline from	1				
(iii) Methyl orange from	-	-			
(iv) 2,4-Dinitrophenylhy		-	dınıtrobenzene.		
(v) Anthranilic acid from	1	1			
(vi) <i>m</i> -Nitroaniline from	nitrobenzene via m-di	nitrobenzene			
Viva-Voce				(10 Marks)	
Note Book				(10 Marks)	
Books Recommended/Ref	ferences:				
2. Macroscale and Micros	cale Organic Experiment Organic Analysis by H. M c Analysis-Qualitative an	d Quantitative by H. Clar	1 D. C. Heath. k.	Hanaford and	

Semester — VIII (Session: 2027- 28)

Name of Program	B.Sc. (Life Sciences/Physical Sciences)	Program Code	
Paper No.	SEC Paper – VI	Nomenclature	Inorganic Chemistry Practical – II
Name of the Course	Skill Enhancement Course	Course Code	27CHE408SE01
Credits	04	Maximum Marks	100
Hours per Week	08	External Marks	70
Duration of	08 Hrs.	Internal Marks	30
Examination			
Additionally, students will and Nitrite ions. The course techniques. Overall, the cou- solving skills, and promote <i>Note: Examiner will set tw</i> Course Learning Outcom CLO1: Separate and detern CLO2: Determine strength CLO3: Determine the strength CLO3: Determine the strength CLO4: Synthesize some m List of Experiments 1. Quantitative Inorga	delve into the principles e emphasizes hands-on ex- urse aims to foster a deep e awareness of sustainable to experiments for practi- nes (CLO): By the end of mine binary mixtures of n ns of ferrous and oxalate to ngths of nitrite ions using netal acetyl acetonato com- nic Analysis ermination of two meta	and applications of cerin sperience in laboratory set understanding of inorgani e practices in chemical an <i>ical examinations</i> . If the course, the students we metal ions using gravimet using cerimetry. g cerimetry (also by indire nplexes employing green	will be able to: ric and volumetric methods. ect method).
 (ii) Oxalate (iii) Nitrite (b) Green methods of p (i) Bis(acetylacetonato) (i) Bis(acetylacetonato)) zinc (II)	owing	
 (iii) Nitrite (b) Green methods of p (i) Bis(acetylacetonato)) zinc (II)	owing	(10 Marks)

(Option –II)

Books Recommended/References:

- 1. A Text Book of Quantitative Inorganic Analysis by A.I. Vogel.
- 2. Applied Analytical Chemistry by O. P. Vermani.
- 3. Vogel's Quantitative Chemical Analysis by J. Mendham.
- 4. Vogel's Qualitative Inorganic Analysis by G. Svehla.
- 5. Practical Inorganic Chemistry by Marr and Rockett.
- 6. Principles of Instrumental Analysis by D. A. Skoog, F. J. Holler and S. R. Crouch.
- 7. Quantitative Chemical Analysis by D. C. Harris.

Name of Program	B.Sc. (Life Sciences/Physical Sciences)	Program Code	
Paper No.	SEC Paper – VI		Physical Chemistry Practical – II
Name of the Course	Skill Enhancement Course	Course Code	27CHE408SE02
Credits	04	Maximum Marks	100
Hours per Week	08	External Marks	70
Duration of Examination	08 Hrs.	Internal Marks	30

Syllabus Objectives: The course on experimental techniques in physical chemistry aims to provide students with a thorough understanding of various experimental methods used in the study of physical chemistry principles. The objectives include developing hands-on experimental skills in physical chemistry techniques and enhancing the understanding of fundamental principles governing physical and chemical processes. This course aims to prepare students for advanced studies or careers in physical chemistry, research and industrial applications by combining theoretical knowledge with practical skills in experimental techniques.

Note: Examiner will set two experiments for practical examinations.

Course Learning Outcomes (CLO): By the end of the course, the students will be able to:

CLO1: Know the concept of viscosity and determine the viscosity of various liquids.

CLO2: Study the conductometric and pH metric titration for determination of normality and strength of acids.

CLO3: Study the potentiometric titration and determine strength and thermodynamic properties of given acids.

CLO4: Determine the partition coefficient of a solute between two immiscible solvents using distribution law.

CLO5: Study the kinetics of hydrolysis of ethyl or methyl acetate and calculation of thermodynamic parameters.

CLO6: Develop the ability to compile interpreted information in the form of lab record.

List of Experiments

1. Viscosity

(25 Marks)

- (i) Study the variation of viscosity with concentration for a glycerol/amyl alcohol solution using Ostwald viscometer and thereafter determine the concentration of unknown solution of glycerol and amyl alcohol.
- (ii) Determination of molar mass of a polymer by using viscometer.
- (iii) Determine the temperature coefficient of given liquid.

2. Conductometry

- (i) Study the equivalent conductance versus square root of concentration relationship of a strong electrolyte (KCl or NaCl) and weak electrolyte (acetic acid).
- (ii) Determine the strength of NaOH and NH₄OH in a given mixture by titrating it against HCl.
- (iii) Estimate conductometrically the quantities of HCl and NH₄Cl in their mixture.

3. pH-metry

(i) Titration of a mixture of (HCl + CH₃COOH) against NaOH pH-metrically and comment on the shape of the curve.

4. Potentiometry

(25 Marks)

- (i) Determine the strength of acetic acid by titrating it against NaOH potentiometrically. Also calculate dissociation constant of acid using quinhydrone electrode.
- (ii) Study the effect of ionic strength on mean activity coefficient of HCl in a given solution.
- (iii) Determine the standard free energy change and equilibrium constant for the reaction.
 - $Cu + 2Ag^+ \longrightarrow Cu^{2+} + 2Ag$

5. Distribution Law

- (i) Study the complex formation of cuprammonium ion or study the complex formation between copper sulphate and ammonia solution.
- (ii) Determination of equilibrium constant for $I_2 + I^- = I^-_3$

6. Chemical Kinetics

- (i) Determination of the rate constant and activation energy for hydrolysis of ethyl or methyl acetate.
- (ii) Determination of the temperature coefficient for hydrolysis of ethyl or methyl acetate and calculation of thermodynamic parameters.

Viva-Voce	(10 Marks)
Note Book	(10 Marks)
Books Boosmmondod/Doforen oose	

Books Recommended/References:

- 1. Practical Physical Chemistry by A. M. James and F. E. Prichard.
- 2. Findley's Practical Physical Chemistry by B. P. Lavitt.
- 3. Practical Physical Chemistry by S. R. Palit and S. K. De.
- 4. Experimental Physical Chemistry by R. C. Das and B. Behera.

Name of Program	B.Sc. (Life Sciences/Physical Sciences)	Program Code	
Paper No.	SEC Paper – VI	Nomenclature	Organic Chemistry Practical – II
Name of the Course	Skill Enhancement Course	Course Code	27CHE408SE03
Credits	04	Maximum Marks	100
Hours per Week	08	External Marks	70
Duration of Examination	08 Hrs.	Internal Marks	30

Syllabus Objectives: The organic synthesis and purity analysis course aims to provide students with a complete understanding of organic synthesis techniques and the methods for assessing the purity of synthesized compounds. The course aims to prepare students for advanced work in organic chemistry, research or industrial applications by combining theoretical knowledge with practical skills in organic synthesis and analytical techniques.

Note: Examiner will set two experiments for practical examinations.

Course Learning Outcomes (CLO): By the end of the course, the students will be able to:

CLO1: Handle organic chemicals in a safe and competent manner.

CLO2: Perform the standard techniques used in practical organic chemistry.

CLO3: Carry out multistep synthesis of organic compounds following a prescribed procedure.

CLO4: Apply the basic chemical concepts to understand the mechanism of chemical reactions.

CLO5: Characterize and purify the synthesized compounds.

List of Experiments	
1. Simple organic preparations and checking the purity of samples prepared:	(20 Marks)
(i) Chalcone from benzaldehyde and acetophenone.	
(ii) Phenyl-azo-β-naphthol dye from aniline.	
(iii) Adipic acid from cyclohexene.	
(iv) 2-Butoxynaphthalene from 2-naphthol and 1-iodobutane.	
(v) 3,4-Dihydropyrimidin-2(1H)-ones from aldehyde, β -ketoester and urea (Biginelli reaction (vi) Benzilic acid from benzil.	on).
2. Two-step organic synthesis and checking purity of samples prepared:	(30 Marks)
(i) Acetanilide from acetophenone <i>via</i> acetophenone oxime.	
(ii) <i>p</i> -Nitroaniline from acetanilide <i>via p</i> -nitroacetanilide.	
(iii) Methyl orange from sulphanilic acid via diazotized sulphanilic acid.	
(iv) 2,4-Dinitrophenylhydrazine from chlorobenzene <i>via</i> 1-chloro-2,4-dinitrobenzene.	
(v) Anthranilic acid from phthalic anhydride <i>via</i> phthalimide.	
(vi) <i>m</i> -Nitroaniline from nitrobenzene <i>via m</i> -dinitrobenzene	
Viva-Voce	(10 Marks)
Note Book	(10 Marks)
Books Recommended/References:	
1. Experiments and Techniques in Organic Chemistry by D. J. Pasto, C. R. Johnson and M. J. Miller	
2. Macroscale and Microscale Organic Experiments by K. L. Williamson and D. C. Heath.	
3. Systematic Qualitative Organic Analysis by H. Middleton.	
4. A Handbook of Organic Analysis-Qualitative and Quantitative by H. Clark.	
5. Vogel's Textbook of Practical Organic Chemistry by A. I. Vogel, A. R. Tatchell, B. S. Furnis, A. P. W. G. Smith.	J. Hanaford and