Syllabi and S.O.E. for Skill Enhancement Course(s) for UG Programs w.e.f. 2024-25 session

# SYLLABI AND SCHEME OF EXAMINATIONS FOR SKILL ENHANCEMENT COURSES FOR UNDER GRADUATE PROGRAMS (SINGLE MAJOR / MULTIDISCIPLINARY/ BACHELOR OF SCIENCE (MATHEMATICS) 4-YEAR PROGRAMS) OFFERED BY THE DEPARTMENT OF MATHEMATICS

(Based on Curriculum and Credit Framework for UG Programs under NEP)



## WITH EFFECT FROM THE SESSION 2024-25

# MAHARSHI DAYANAND UNIVERSITY ROHTAK (HARYANA)

### SYLLABI AND SCHEME OF EXAMINATIONS FOR SKILL ENHANCEMENT COURSES FOR

### UNDER GRADUATE SINGLE MAJOR/MULTIDISCIPLINARY PROGRAMS/ SINGLE MAJOR PROGRAM AFTER 2nd SEMESTER OF MULTIDISCIPLINARY PROGRAM

| Skill<br>Enhancement   | Nomenclature<br>of Course                 | Course Code          | Credits |    | Total<br>Credits | Workload  |       | Total<br>Workload | Marks |          |          |          |           |          |       |
|------------------------|-------------------------------------------|----------------------|---------|----|------------------|-----------|-------|-------------------|-------|----------|----------|----------|-----------|----------|-------|
| Course (SEC)           | or course                                 |                      | L       | T  | P                | Creatis   | L     | Т                 | Р     | Workload | Theory   |          | Practical |          | Total |
| × ,                    |                                           |                      |         |    |                  |           |       |                   |       |          | Internal | External | Internal  | External | Marks |
| SEMESTER 1 (2024-25)   |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| SEC 1 @ 3              | Mathematical                              | 24MAT401SE01         | 02      | 00 | 01               | 03        | 2     | 0                 | 2N    | 2+2N     | 15       | 35       | 05        | 20       | 75    |
| credits                | Programming in C and<br>Numerical Methods |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| SEMESTER II (2024-25)  |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| SEC 2 @ 3              | Numerical Analysis                        | 24MAT402SE01         | 02      | 00 | 01               | 03        | 2     | 0                 | 2N    | 2+2N     | 15       | 35       | 05        | 20       | 75    |
| credits                |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| SEMESTER 1II (2024-25) |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| SEC 3 @ 3              | <b>Operations Research</b>                | 25MAT403SE01         | 02      | 00 | 01               | 03        | 2     | 0                 | 2N    | 2+2N     | 15       | 35       | 05        | 20       | 75    |
| credits                | Techniques                                |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
|                        |                                           |                      |         |    | SEN              | 1ESTER VI | (202  | 4-25)             |       |          |          | 1        | •         | -        |       |
| SEC 4 @ 2              | Vedic Mathematics                         | 26MAT406SE01         | 02      | 00 | 01               | 03        | 2     | 0                 | 2N    | 2+2N     | 15       | 35       | 05        | 20       | 75    |
| credits (offered       |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| only in case of        |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| Single Major           |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| Programme)             |                                           |                      |         |    | CEM              |           | (20)  |                   |       |          |          |          |           |          |       |
| SEMESTER VI1 (2024-25) |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| SEC 5 @ 4              | Discrete Mathematics                      | 24MAT407SE01         | 03      | 01 | 00               | 04        | 3     | 1N                | 00    | 3+1N     | 30       | 70       | 00        | 00       | 100   |
| credits                | Object Oriented                           | 24MAT407SE02         | 2       | 0  | 2                | 4         | 2     | 0                 | 4N    | 2+4N     | 15       | 35       | 15        | 35       | 100   |
| (if offered as an      | Programming with C++                      |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| option)                |                                           |                      |         |    | CEM              | ECTED VII | 1 (20 | 24.25)            |       |          |          |          |           |          |       |
|                        |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |
| SEC 6 @ 4              | Advanced Complex                          | 24MAT408SE01         | 03      | 01 | 00               | 04        | 3     | IN                | 00    | 3+1N     | 30       | 70       | 00        | 00       | 100   |
| credits                | Analysis<br>Dether                        | 2414 4 7 409 5 5 0 2 | 2       | 0  | 2                | 4         | 2     | 0                 | 411   | 2 + 4N   | 15       | 25       | 15        | 25       | 100   |
| (II offered as an      | Pytnon                                    | 24MA1408SE03         | 2       | 0  | 2                | 4         | 2     | 0                 | 41N   | 2+41N    | 15       | 55       | 15        | 55       | 100   |
| opuon)                 |                                           |                      |         |    |                  |           |       |                   |       |          |          |          |           |          |       |

N : Number of Groups in the Class

L: Lecture; T: Tutorial; P: Practical

### Syllabi for SKILL ENHANCEMENT COURSES

### Semester I

### Session: 2024-25

| Name of Program                                                                                         |                                    | Program Code                            |                                       |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|---------------------------------------|--|--|--|--|--|
| Name of the Course                                                                                      | Mathematical                       | Course Code                             | 24MAT401SE01                          |  |  |  |  |  |
|                                                                                                         | Programming in C and               |                                         |                                       |  |  |  |  |  |
|                                                                                                         | Numerical Methods                  |                                         |                                       |  |  |  |  |  |
| Hours per Week                                                                                          | 04                                 | Credits                                 | 03                                    |  |  |  |  |  |
| Maximum Marks                                                                                           | 75 (50 Theory + 25                 | Time of Examinations                    | 03 Hours                              |  |  |  |  |  |
|                                                                                                         | Practical)                         |                                         |                                       |  |  |  |  |  |
| Note:                                                                                                   |                                    |                                         |                                       |  |  |  |  |  |
| Examiner will set nine que                                                                              | estions and the candidates with    | ill be required to attempt five         | e questions in all. Question          |  |  |  |  |  |
| number one will be comput                                                                               | lsory containing four short ar     | swer type questions from all            | sections. Further, examiner           |  |  |  |  |  |
| will set two questions from                                                                             | n each section and the candid      | lates will be required to atter         | npt one question from each            |  |  |  |  |  |
| Section. All questions will                                                                             | carry equal marks.                 |                                         |                                       |  |  |  |  |  |
| Course Learning Outcom                                                                                  | es (CLO):                          |                                         |                                       |  |  |  |  |  |
| CLO 1: Develop C programs and execute them.                                                             |                                    |                                         |                                       |  |  |  |  |  |
| CLO 2: Write the C code f                                                                               | or a given algorithm.              |                                         | · · · · · · · · · · · · · · · · · · · |  |  |  |  |  |
| CLO 3: Learn conditional                                                                                | statements, logical statement      | s and their programs along w            | ith array implementation.             |  |  |  |  |  |
| CLO 4: Apply numerical m                                                                                | iethods using C language.          |                                         |                                       |  |  |  |  |  |
| Dragnon mar's model of a                                                                                | Section Algorithms Elaws           | ion - I                                 | and aumassions Input /                |  |  |  |  |  |
| Output functions Decision                                                                               | a control structure: Decision      | statements, Logical and cond            | itional statements                    |  |  |  |  |  |
| Implementation of Loops                                                                                 | Switch Statement & Case cor        | statements, Logical and cond            | approcessors and Arrays               |  |  |  |  |  |
| Implementation of Loops, s                                                                              | Switch Statement & Case con        | n - II                                  | eprocessors and Arrays.               |  |  |  |  |  |
| Strings: Character Data 7                                                                               | Type. Standard String hand         | ling Functions. Arithmetic              | Operations on Characters.             |  |  |  |  |  |
| Structures: Definition, usin                                                                            | g Structures, use of Structur      | es in Arrays and Arrays in S            | tructures. Pointers: Pointers         |  |  |  |  |  |
| Data type. Pointers and Arr                                                                             | avs. Pointers and Functions.       |                                         |                                       |  |  |  |  |  |
|                                                                                                         | Sectio                             | on - III                                |                                       |  |  |  |  |  |
| Solution of Algebraic and                                                                               | Transcendental equations: H        | Bisection method, Regula-Fa             | lsi method, Secant method,            |  |  |  |  |  |
| Newton-Raphson's method                                                                                 | l. Newton's iterative method       | l for finding pth root of a nur         | nber, Order of convergence            |  |  |  |  |  |
| of above methods.                                                                                       |                                    |                                         |                                       |  |  |  |  |  |
|                                                                                                         | Sectio                             | on - IV                                 |                                       |  |  |  |  |  |
| Simultaneous linear algebra                                                                             | raic equations: Gauss-elimin       | ation method, Gauss-Jordan              | method, Triangularization             |  |  |  |  |  |
| method (LU decompositio                                                                                 | on method). Crout's method         | l, Cholesky Decomposition               | method. Iterative method,             |  |  |  |  |  |
| Jacobi's method, Gauss-Se                                                                               | idal's method, Relaxation me       | ethod.                                  |                                       |  |  |  |  |  |
| Part-B (Practical)                                                                                      |                                    |                                         |                                       |  |  |  |  |  |
|                                                                                                         |                                    | Mor. Morta . 25 (Ertor                  | nol (term and ever) 20)               |  |  |  |  |  |
|                                                                                                         |                                    | Max. Marks : 25 {Exter                  | (Internal = 5)                        |  |  |  |  |  |
|                                                                                                         |                                    |                                         | 111111111111111111111111111111111111  |  |  |  |  |  |
| There will be a separate n                                                                              | ractical paper consisting of       | implementation of Linear P              | rogramming studied in the             |  |  |  |  |  |
| theory paper 24MAT401S                                                                                  | <b>E01</b> (Part-A). There will be | five questions in all, and the          | e students must attempt any           |  |  |  |  |  |
| three questions. The question paper will set on the spot jointly by the internal and external examiners |                                    |                                         |                                       |  |  |  |  |  |
| Distribution of Marks will be as follows:                                                               |                                    |                                         |                                       |  |  |  |  |  |
| Marks for Ouestion Paper: 12                                                                            |                                    |                                         |                                       |  |  |  |  |  |
| Marks for Practical Record Book: 05                                                                     |                                    |                                         |                                       |  |  |  |  |  |
| Marks for Viva-Voce: 03                                                                                 |                                    |                                         |                                       |  |  |  |  |  |
| Total:                                                                                                  | 20                                 |                                         |                                       |  |  |  |  |  |
| References:                                                                                             |                                    |                                         |                                       |  |  |  |  |  |
| 1. B.W. Kernighan a                                                                                     | and D.M. Ritchie, The C Prog       | gramming Language, 2 <sup>nd</sup> Edit | tion                                  |  |  |  |  |  |
| 2. V. Rajaraman, Programming in C, Prentice Hall of India, 1994                                         |                                    |                                         |                                       |  |  |  |  |  |
| 3. Byron S. Gottfried, Theory and Problems of Programming with C, Tata McGraw-Hill Publishing Co.       |                                    |                                         |                                       |  |  |  |  |  |
| Ltd., 1998                                                                                              |                                    |                                         |                                       |  |  |  |  |  |
| 4. Babu Ram, Numer                                                                                      | rical Methods, Pearson Publi       | cation.                                 |                                       |  |  |  |  |  |
| 5. M.K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical Method, Problems and Solutions, New Age              |                                    |                                         |                                       |  |  |  |  |  |
| International (P) L                                                                                     | .td., 1996                         |                                         |                                       |  |  |  |  |  |

- M.K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical Method for Scientific and Engineering Computation, New Age International (P) Ltd., 1999
- 7. E. Balagurusamy, Programming in ANSI C, Tata McGraw-Hill Publishing Co. Ltd.

### Syllabi and S.O.E. for Skill Enhancement Course(s) for UG Programs w.e.f. 2024-25 session Semester II

#### Session: 2024-25

| Name of Program                                                                                                |                                 | Program Code                    |                               |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-------------------------------|--|--|--|--|--|--|
| Name of the Course                                                                                             | Numerical Analysis              | Course Code                     | 24MAT402SE01                  |  |  |  |  |  |  |
| Hours per Week                                                                                                 | 04                              | Credits                         | 03                            |  |  |  |  |  |  |
| Maximum Marks                                                                                                  | 75 (50 Theory + 25              | Time of Examinations            | 03 Hours                      |  |  |  |  |  |  |
|                                                                                                                | Practical)                      |                                 |                               |  |  |  |  |  |  |
| Note:                                                                                                          |                                 |                                 |                               |  |  |  |  |  |  |
| Examiner will set nine que                                                                                     | stions and the candidates with  | ill be required to attempt five | e questions in all. Question  |  |  |  |  |  |  |
| number one will be compulsory containing four short answer type questions from all sections. Further, examiner |                                 |                                 |                               |  |  |  |  |  |  |
| will set two questions from each section and the candidates will be required to attempt one question from each |                                 |                                 |                               |  |  |  |  |  |  |
| Section. All questions will carry equal marks.                                                                 |                                 |                                 |                               |  |  |  |  |  |  |
| Course Learning Outcom                                                                                         | Course Learning Outcomes (CLO): |                                 |                               |  |  |  |  |  |  |
| CLO1 Learn about interp                                                                                        | olation with equal and unequ    | difference formulae for inter   | nolation                      |  |  |  |  |  |  |
| CLO 2 Apply forward, ba                                                                                        | ackward, central and divided    | concerned problems              | polation.                     |  |  |  |  |  |  |
| <b>CLO 3</b> Apply standard pro                                                                                | boability distributions to the  | intion and various matheds f    | or finding solution of sigon  |  |  |  |  |  |  |
| value problems                                                                                                 | lethod of humerical different   | nation and various methods i    | or finding solution of eigen  |  |  |  |  |  |  |
| CLO5 Know how to solv                                                                                          | e integration and ordinary di   | fferential equation using num   | perical data                  |  |  |  |  |  |  |
|                                                                                                                | Sorti                           | ion - I                         |                               |  |  |  |  |  |  |
| Finite Differences operator                                                                                    | rs and their relations Findi    | ng the missing terms and eff    | ect of error in a difference  |  |  |  |  |  |  |
| tabular values Interpolation                                                                                   | on with equal intervals. Ne     | wton's forward and Newton       | n's backward interpolation    |  |  |  |  |  |  |
| formulae Interpolation with                                                                                    | h unequal intervals. Newton     | 's divided difference Lagran    | ge's Interpolation formulae   |  |  |  |  |  |  |
| Hermite Formula                                                                                                | in unequal intervals. The wron  | s arriada annorence, Lagran     | ge s interpolation formaliae, |  |  |  |  |  |  |
|                                                                                                                | Secti                           | on - II                         |                               |  |  |  |  |  |  |
| Central Differences: Gauss                                                                                     | s forward and Gauss's back      | ward interpolation formulae     | , Sterling, Bessel Formula.   |  |  |  |  |  |  |
| Numerical Differentiation:                                                                                     | Derivative of a function usin   | g interpolation formulae.       |                               |  |  |  |  |  |  |
| Eigen Value Problems: Pov                                                                                      | wer method, Jacobi's method     | l, Given's method, House-Ho     | lder's method, QR method,     |  |  |  |  |  |  |
| Lanczos method.                                                                                                |                                 |                                 |                               |  |  |  |  |  |  |
|                                                                                                                | Sectio                          | on - III                        |                               |  |  |  |  |  |  |
| Numerical Integration: New                                                                                     | wton-Cote's Quadrature forr     | nula, Trapezoidal rule, Simp    | son's one- third and three-   |  |  |  |  |  |  |
| eighth rule, Chebychev form                                                                                    | mula, Gauss Quadrature form     | nula.                           |                               |  |  |  |  |  |  |
|                                                                                                                | Sectio                          | on - IV                         |                               |  |  |  |  |  |  |
| Numerical solution of ordin                                                                                    | nary differential equations: Si | ingle step methods-Picard's r   | nethod. Taylor's series       |  |  |  |  |  |  |
| method, Euler's method, Ru                                                                                     | unge-Kutta Methods. Multip      | le step methods; Predictor-co   | rrector method, Modified      |  |  |  |  |  |  |
| Euler's method, Milne-Sim                                                                                      | pson's method.                  |                                 |                               |  |  |  |  |  |  |
| Part-B (Practical )                                                                                            |                                 |                                 |                               |  |  |  |  |  |  |
|                                                                                                                |                                 | Max. Marks : 25 {Exter          | nal (term-end exam) – 20}     |  |  |  |  |  |  |
|                                                                                                                |                                 |                                 | (Internal – 5)                |  |  |  |  |  |  |
|                                                                                                                |                                 |                                 | Time : 3 Hours                |  |  |  |  |  |  |
| There will be a separate p                                                                                     | ractical paper consisting of    | implementation of Linear Pi     | rogramming, studied in the    |  |  |  |  |  |  |
| three questions. The question                                                                                  | EUI (Part-A). There will be     | live questions in all, and the  | students must attempt any     |  |  |  |  |  |  |
| Distribution of Morks will 1                                                                                   | ba as follows:                  | jointry by the internal and ext | ernar exammers.               |  |  |  |  |  |  |
| Marks for Question Paper:                                                                                      | 12 Je as follows.               |                                 |                               |  |  |  |  |  |  |
| Marks for Practical Pacord                                                                                     | Rock: 05                        |                                 |                               |  |  |  |  |  |  |
| Marks for Viva-Voce                                                                                            | DOOK. 03                        |                                 |                               |  |  |  |  |  |  |
| Total                                                                                                          | 20                              |                                 |                               |  |  |  |  |  |  |
| References:                                                                                                    |                                 |                                 |                               |  |  |  |  |  |  |
| 1 Babu Ram Numer                                                                                               | rical Methods: Pearson Publi    | cation                          |                               |  |  |  |  |  |  |
| 2. R.S. Gupta, Elements of Numerical Analysis, Macmillan's India 2010.                                         |                                 |                                 |                               |  |  |  |  |  |  |
| 3. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Method. Problems and Solutions. New Age                 |                                 |                                 |                               |  |  |  |  |  |  |
| International (P) L                                                                                            | .td., 1996                      |                                 |                               |  |  |  |  |  |  |
| 4. M. K. Jain. S.R                                                                                             | .K. Iyengar and R.K. Jair       | n, Numerical Method for S       | Scientific and Engineering    |  |  |  |  |  |  |
| Computation. New                                                                                               | w Age International (P) Ltd     | 1999                            | B                             |  |  |  |  |  |  |
| 5. C. E. Froberg, Intr                                                                                         | oduction to Numerical Analy     | ysis (2 <sup>nd</sup> Edition). |                               |  |  |  |  |  |  |
| 6. Melvin J. Maaror                                                                                            | n, Numerical Analysis-A Pra     | actical Approach, Macmillan     | Publishing Co., Inc., New     |  |  |  |  |  |  |
| York                                                                                                           | 2                               | •• ·                            |                               |  |  |  |  |  |  |
| 7 DV Dubnistein C                                                                                              | Vincelation and the Mante Co    | ale Methode John Wilson 100     | 01                            |  |  |  |  |  |  |